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Abstract

Precise fetal head circumference measurement by ultrasound imaging is of great
significance for prenatal examination. However, missing or blurring boundaries
caused by artifacts and noises challenge measurement accuracy. The incon-
sistency between the segmentation pseudo-label and the ellipse contours also
generates measurement errors. To improve the measurement performances of
fetal head circumference, in this study, we propose an ellipse-guided multi-task
network that measures the fetal head circumference according to detected ellipse
boundary pixels. In the proposed network, an region segmentation branch is
designed to learn region features of the fetal head, and a feature fusion module is
applied to combine region features with boundary features, which contribute to
exploring more context information of fetal head and locating boundary pixels
in boundary missing or blurring regions. A loss function is also designed in the
network to ensure the boundary estimation in an ellipse shape. Experiments
are conducted on both the public fetal head circumference measurement dataset
HC-18 and a self-built ultrasonic phantom dataset. The experimental results
demonstrate that the proposed method achieves excellent performances to com-
pete with other state-of-the-art methods in fetal head circumference measure-
ment, which can handle the conditions of boundary missing or region blurring.
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1. Introduction

Ultrasound imaging is widely used for monitoring fetal growth and develop-
ment during the prenatal examination due to the advantages of non-invasive,
non-radioactive, painless, and cost-effective [1]. In prenatal examinations, fetal
head circumference (HC) is an important physiological indicator, which is re-
quired to be precisely measured for gestational age prediction [2]. Nevertheless,
currently, clinical HC measurement based on ultrasound imaging requires well-
trained and experienced sonographers, since ultrasound images are not intuitive
and HC measurement results are operator-dependent and machine-specific that
leading to inter-and intra-observer variability [3] [4]. Therefore, an automatic
measurement system of fetal ultrasound images is needed, which not only can
reduce the variability but also reduce the workload of clinicians.

One of the commonly used approaches in automatic HC measurement is el-
lipse estimation [5, 6, 7, 8, 9], as shown in Fig. 1(b). Specifically, deep-learning-
based measurement methods [5, 6, 8] have been presented to regress the ellipse
parameters directly from the original ultrasound images. However, these meth-
ods with a regression branch suffer from high measurement errors in the ellipse
parameter estimation since ultrasound imaging contains various artifacts, such
as motion blurring, missing boundaries, acoustic shadows, and speckle noises,
which may cause boundary missing (the region in the red bounding box in Fig.
1(a)) or blurring ( the region in the orange bounding box in Fig. 1(a))of the
fetal head. To solve this problem, HC measurement approaches based on the
segmentation contour of fetal head area are proposed [7, 9]. With the abun-
dant context information of the segmentation results, these segmentation-based
methods can improve the performance of evaluating the parameters of the fetal
head region to a certain extent. Nevertheless, the segmentation results are un-
reliable, because the annotation provided by the clinician is fetal head elliptical
contour (shown in Fig. 1(b)) rather than the ground truth of the segmentation
of the real fetal head area. To train segmentation models [7, 9], the whole el-
lipse is treated as the pseudo-label of the segmentation (displayed in Fig. 1(c)).
As shown in Fig. 1, the shape of the fetal head region is not a standard el-

(a) (b) (c)

HC

Figure 1: (a) is an original ultrasound image and (b) is an ellipse annotation produced by
the sonographer, (c) is a segmentation pseudo-label generated by filling the ellipse annotation
showed in (b). The boundary missing region is illustrated in red bounding box and the
boundary in orange bounding box is blurring.
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lipse, which will lead to the model errors between the fetal head region and
the pseudo-label of the segmentation in the training phase. This problem will
weaken the performance of segmentation-based measurement methods. Obvi-
ously, for the irregular fetal head shape in ultrasound images, it is much easier
to detect the fetal head boundary pixels and fit an ellipse that is as consistent
as possible with the boundary than to obtain an accurate ellipse segmentation.
Since the elliptical contours are provided in this task, we argue that an ellipti-
cal boundary, which can mostly cover the fetal head region, would achieve the
reliable measurement of fetal head circumference.

In this paper, we propose an ellipse-guided multi-task network to boost the
performance of HC measurement in ultrasound images. Specifically, a boundary
detection branch is developed to locate fetal head boundary pixels considering
that HC measurement is based on the contours composed of these boundary pix-
els. Nevertheless, the existence of artifacts and maternal uterus which texture
structure is similar to fetal head boundary cause missing or blurring bound-
aries in ultrasound images would weak the accuracy of boundary detection.
Therefore, the region features of the head area are extracted to assist boundary
detection, which can contribute to locating the boundary of the fetal head and
effectively remove false boundary detection. Moreover, to improve the robust-
ness of the boundary detection, a feature fusion module is designed to integrate
the boundary features and region features. More useful context information can
be extracted from the fused features which improve the capability of boundary
detection in low contrast ultrasound images and even eliminates boundary leak-
ages in the boundary missing or blurring regions. As the shape prior of the fetal
head is an ellipse, an ellipse-shaped loss function is proposed to constraint the
results of boundary detection. Since the annotations are standard ellipses, the
ellipse-shaped loss can effectively guide the detected boundary contours close to
the elliptical annotations as much as possible. This is particularly important for
the improvement of performance for HC measurement. The proposed method is
evaluated on the public dataset (HC-18 [3]) and a self-built simulated phantom
ultrasound dataset. The experimental results show that the proposed method
outperforms the state-of-the-art methods. The main contributions of this work
are summarized as follows:

•An ellipse-guided network based on multi-task learning is proposed for fetal
head circumference measurement.

•The fetal head boundaries are obtained by the boundary detection branch,
without having to resort to segmentation, which reduces errors caused by the
inconsistency between the segmentation pseudo-label and the fetal head area.

•The localization information of the fetal head boundaries in the region fea-
tures from the region segmentation branch and the ellipse information provided
by an ellipse-shape loss are applied to improve the measurement performance.

The remainder of this paper is organized as follows: In Section 2, we de-
scribe the published fetal head measurement methods based on a single model
and multi-task learning. Then the details of our method are illustrated and
introduced in Section 3. The experimental results and discussions on HC-18 [3]
dataset are conducted in Section 4. The experimental results and discussions on
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our self-built dataset are conducted in Section 5. Finally, Section 6 concludes
the whole paper.

2. Deep learning-based method for fetal head circumference measure-
ment

Recently, deep learning methods have won great success in HC measure-
ment. The work in HC [9] develops two probabilistic CNN methods: Monte
Carlo Dropout during inference and probabilistic UNet. The generated set of
segmentation masks is used to reject acquired images that produce sub-optimal
HC measurements. In [7], a cascaded FCN is applied for fetal head segmen-
tation. Approaches based on a single segmentation task such as [7, 9] may
ignore the potential information in related tasks that can improve measurement
performance. As well-known that multi-task learning has been used success-
fully across all applications of machine learning [10, 11, 12, 13]. The multi-task
learning strategy also has been used in HC measurement [6, 8, 14]. [8] com-
bines the classification information of the fetal pregnancy cycle to improve the
segmentation performance. For multi-task learning, the higher the correlation
between tasks, the greater the promotion effect on the main task [15]. Based
on the simplification of fetal head circumference into an ellipse circumference
as mentioned in Section 1, ellipse information is much useful to improve the
measurement performance. Regressing ellipse parameters from the segmenta-
tion features is employed as an auxiliary task in a multi-task neural network
[14], which can be trained by minimizing a compound cost function composed
of segmentation dice score and mean square error (MSE). The localization in-
formation of the fetal head is also considered for HC measurement performance
improvement. A combined fetal head localization and fetal head segmentation
method based on Mask R-CNN is proposed in [16]. A regression branch is added
in an FCNN, and the localization information from the segmentation mask is
applied to improve the[6].

Most of these above approaches take segmenting the whole fetal head as a
preliminary step for HC measurement. However, some works [17, 18] have been
proposed which aim at directly extracting biomarkers from medical images.
The goal is to avoid intermediate steps, such as segmentation, that may be
computationally expensive and prone to errors. A similar approach is proposed
for HC measurement in [5], where a regression CNN is applied to estimate the
HC from fetal head ultrasound images, without having to resort to segmentation.
Considering that the localization of the fetal head is beneficial to improve HC
measurement performance, a region proposal CNN for head localization and
centering is used in [19]. The experimental results demonstrate that it can
improve the HC delineation performance of the regression CNN.

According to these considerations, in this study, we design a direct approach
to estimate the HC by fetal head boundary detection with a multi-task learn-
ing network. For improvement of detection performance, the fetal head region
features are used as localization information of fetal head boundary. And the el-
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lipse information is introduced into the network by an ellipse-shaped loss which
guides the detected boundary close to the ellipse shape.

3. Improving ellipse boundary detection with region features fusion
for fetal head circumference measurement

Although the fetal head boundaries are incomplete due to artifacts and
noise interference in ultrasound images, a good fetal head circumference method
should be able to provide an accurate ellipse. It means that the model should not
only avoid the interference caused by artifacts and noise, but also obtain the el-
lipse contours from these incomplete boundary pixels. The proposed method in
this work extracts the region features of the fetal head area for localization, and
guides the output of the network close to the ellipse shape by an ellipse-shape
loss. These make our method has superior performance under the interference
of artifacts and noise.
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Figure 2: The architecture of our network. The network consists of a Darknet-53 encoder
path and two decoder paths. One decoder path is the head region segmentation branch, the
other is the ellipse detection branch. The features from the segmentation branch and ellipse
detection branch are fed into a feature fusion module, which can help the ellipse detection
branch to accurately locate the head boundary. And an ellipse-shaped loss is designed to do
shape constraints on boundary detection results.

Fig.2 shows the architecture of our proposed network, the proposed multi-
task ellipse-guided network includes a framework for region segmentation and
an ellipse detection. Inspired by [20, 21, 22], which show that coarse segmen-
tation results can infer the context information for performance improvement,
We introduce segmentation features into the boundary detection branch to dy-
namically extract the context information contained in the segmentation, which
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helps the boundary detection branch to distinguish boundary pixels from back-
ground pixels. The region features from the segmentation branch and boundary
features from the detection branch are integrated and further selected to explore
more context information for boundary detection. The shape prior information
is also incorporated into the ellipse detection branch, which can guide the fea-
ture extraction in the model. Fit the output of the boundary detection with an
ellipse, and an ellipse-shaped loss is designed to supervise the ellipse parame-
ters. From the fitted ellipse, the HC length is computed. More details will be
introduced in this section.

3.1. Ellipse detection and region segmentation framework

Generally, the context information is useful for improving the performance
in many visual applications [23, 24, 25]. As mentioned above, the information
in region segmentation features is also useful for distinguishing boundary pixels
and noise. For enhancing the ability of ellipse detection of the fetal head, the
context information in fetal head region features is introduced into boundary
detection for an accurate boundary. A feature fusion module is used to integrate
information between the region segmentation features and the ellipse detection
features, which contributes to accurate ellipse detection due to the provision of
boundary and region information of the fetal head.

In this study, we modify the Darknet-53 [26] as an encoder path to extract
detailed context features, the two decoder paths are the region segmentation
branch and the ellipse detection branch, respectively. As shown in Fig. 2,
each the i th Encoder block contains xi DarknetResidual block (where xi ∈
{1, 2, 8, 8, 4}, and i∈ {1, 2, 3, 4, 5}). We apply Conv batch instead of Maxpooling
layer to do downsampling since some significant spatial information is lost by
Maxpooling operations [27], which is important for boundary detection. The
Conv batch block contains a convolutional layer (kernel size = 3, stride = 2).
The convolution is followed by batch normalization and a LeakyRelu with a
constant multiplier α, equal to 0.1 to control the slope of the activation function
for negative values. Similarly, the Tf layerS presented in Fig. 2 are also applied
both on the two decoders to concatenate the correspondingly feature map from
the encoder path. Each decoder block contains 1 DarknetResidual Block. A
deConv batch block is used to do upsampling.

To alleviate the influence of boundary missing and blurring regions for the
ellipse detection, the framework in our method simultaneously learns the re-
gion information in the segmentation features and boundary information in the
detection features. And the region information can be treated as boundary
localization in boundary missing or blurring regions. For exploring more con-
text information of fetal head boundary, a feature fusion module is designed
to achieve features integration between region features and boundary features.
The details of the feature fusion module will be presented in the next section.

3.2. Feature fusion module

For the information integration between the region and the boundary, a fea-
ture fusion module is designed to fuse context features in the two decoding paths.
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Figure 3: Feature fusion module

The fusion module can assist the ellipse detection branch in accurately locating
boundaries according to the region information. The feature fusion module is
shown in Fig. 3. The region segmentation features FO contain rich context
information, while the boundary features FE contain rich shape information.
The fusion block can be formulated as follows:

F ′
E = α(f(FO) + FE) + FE (1)

F ′
O = α(f(F ′

E) + FO) + FO (2)

where F ′
E denotes the output detection features and F ′

O denotes the output
segmentation features, f means 1× 1 convolution with BN and Relu. α means
coordinate attention module [28]. Some visualization examples are given in Fig.
4. From the comparison, we can see that the processed features by feature
fusion module ( illustrated as Fig. 4(d) and Fig. 4(i)) contain more accurate
boundary information in boundary missing or blurring regions than original
features (presented as Fig. 4(b) and Fig. 4(g)), which improves the boundary
detection performance, as shown in Fig. 4(c) and Fig. 4(e), Fig. 4(h) and
Fig. 4(j). Obviously, the boundary detection capability of the ellipse detection
framework is get improved so that weak boundaries in boundary missing or
blurring regions can be correctly identified. It means that the feature fusion of
the segmentation context information is necessary.

3.3. Ellipse-shaped loss

To keep the boundary close to the fetal head ellipse shape and achieve higher
performance, ellipse fitting is performed on the output of the boundary detection
branch, and an ellipse-shaped loss is designed (as shown in Fig. 2) considering
the shape constraint [29, 30], which can be defined as
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4: Comparison between with and without feature fusion module. (a) is an ultrasound
image with a blurring boundary. (b) is the output feature without the feature fusion module
in the model. (c) is the detected head boundary without the feature fusion module. (d) is the
output feature with the feature fusion module in the model. (e) is the detected head boundary
with the feature fusion module. (f) is an ultrasound image with boundary missing. (g) is the
output feature without the feature fusion module in the model. (h) is the detected head
boundary without the feature fusion module. (i) is the output feature with the feature fusion
module in the model. (j) is the detected head boundary with the feature fusion module. It
can be seen that more details about head boundary can be found by the context information
from the segmentation branch.

LS = MSE(ŷ(a, b, x, y, θ), y(a, b, x, y, θ)) (3)

where MSE is the Mean Square Error function. a, b, x, y, θ are the ellipse
parameters,a and b are major and minor semi-axes of ellipse, x and y are cen-
ter coordinates of ellipse, θ is rotation angle of ellipse, as shown in Fig. 2.
ŷ(a, b, x, y, θ) is the prediction of ellipse fitted by detected boundary pixels,
y(a, b, x, y, θ) is the provided label. The least-square fitting is used to do ellipse
fitting on the detected boundary pixels’ coordinates. The ellipse-shaped loss LS

can guide the training of our model in an end-to-end fashion.
With the obtained ellipse-shaped loss in Eq. 3, the final loss function of our

multi-task network can be defined as:

L = Ldice(ŷS , yS) + Ldice(ŷE , yE) + LMSE(ŷ(a, b, x, y, θ), y(a, b, x, y, θ)) (4)

where the segmentation loss Ldice(ŷS , yS), the boundary detection loss Ldice(ŷE , yE)
and the ellipse-shaped loss LMSE(ŷ(a, b, x, y, θ), y(a, b, x, y, θ)). ŷS is segmenta-
tion prediction, yS is the segmentation pseudo-label. And ŷE is the boundary
detection results, yE is the fetal head ellipse contour. With the final loss, the
the multi-task model can eventually learn the features of fetal head boundary
and region under the constraint of ellipse shape.

4. Experiments on HC-18 dataset

4.1. Experimental setup

In experiments, we evaluated the performance of our method on a publicly
available dataset HC-18. Table 1 shows the distribution of HC-18 datasets from
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the first to the third trimester. Since the ground truth was not available in the
original HC-18 test set, we divided 90% annotated images of the HC-18 training
set into our training set and the rest images into our new test set. The ablation
experiments were studied on the new test set, as listed in Table 2. Annotated
images of HC-18 had the resolution of 800×540, with the pixel size from 0.0520
mm to 0.326 mm. In our experiments, all images were padded to 800×800 pixels
with zero, then resized to 416 × 416 pixels. Online data augmentation such as
rotation, gray transformation, and horizontal flip was randomly applied at each
training iteration. The batch size was set as 8 and the epochs were 200. In the
training step, Adam optimizer with an initial learning rate of 0.0001 was used
to minimize the multi-task loss in Eq. 4. All experiments were implemented
using the deep learning framework Pytorch on a computer with NVIDIA GTX
1080Ti GPUs.

Table 1: The distribution of HC-18 dataset
Period Training set Test set
First trimester 165 55
Second trimester 693 233
Third trimester 141 47
Total 999 335

Table 2: The distribution of experimental dataset

Period Training set Test set
First trimester 150 15
Second trimester 623 70
Third trimester 125 16
Total 898 101

To evaluate the HC measurement performance on HC-18, we chose three
metrics including Dice similarity coefficient (DSC) [%], Absolute Difference
(ADF) [mm], and Hausdorff Distance (HD) [mm]. They are defined as:

DSC =
2(Yp ∩ Yg)

| Yp | + | Yg |
(5)

ADF =| HCp −HCg | (6)

HD = max(h(Yg, Yp), h(Yp, Yg))

h(Yp, Yg) = maxYg∈Yp
minYp∈Yg

∥ Yp − Yg ∥
h(Yg, Yp) = maxYp∈Yg

minYg∈Yp
∥ Yg − Yp ∥ (7)

where Yg denotes the fetal head area delimited by the ellipse contours delineated
by clinician, Yp is the fetal head area delimited by the ellipse obtained with our
proposed method. HCp represents the circumference measured from the ellipse
detection branch and HCg is the clinician manual annotation.
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Figure 5: Qualitative evaluation of ablation study on the new test dataset. The first and the
fourth row show examples with poor fetal head boundary contrast to the background. The
images in the second and the fifth row are examples of fetal head boundary-blurring regions.
The third and the sixth row presents examples with boundary missing regions. Each column
shows the original ultrasound images ( first column), the corresponding ellipse annotations
( sixth column), the ellipse detection results obtained by Base (second column), Base+Seg
(third column), Base+Seg+ESFF (fourth column), Base+Seg+ESFF+Shape (fifth column),
respectively.

4.2. Ablation experiment on the new test set

To show the effectiveness of different components in our model, we present an
ablation experiment on the new test set to quantitative and qualitative analysis
of the following components in Table 3 and Fig. 5: boundary detection branch
(Base), region segmentation branch (Seg), feature fusion module (ESFF) and
ellipse-shaped loss (Shape). The lowest mean AD (2.06 mm) is obtained with
the Base (boundary detection only), which shows the challenge of boundary
missing or blurring regions for boundary detection. However, it can be observed
that adding the Seg yields improvements in terms of ADF (0.13 mm). We can
see from the second column and the third column in Fig. 5, after adding the
region segmentation branch, more accurate boundary pixels can be detected
in boundary missing or blurring regions noted in the red bounding box. This
achievement can be explained by learning region features which encourage the
network to explore more information to distinguish the fetal head area from the
background. Benefiting from the ESFF, the performance of DSC, HD, and ADF
in the Table 3 has been further improved, increasing by 0.25%, 0.08 mm, and
0.06 mm respectively. As shown in the fourth column in the figure, the wrong
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boundary pixels are corrected, and the detected boundaries of the fetal head
are more complete. This means that the designed feature fusion module can
select better context information in the boundary features and region features,
thereby facilitating the boundary detection branch to locate the head boundary.
With the Shape added in ellipse detection branch, the detected boundary is
closer to the elliptical shape, and the detected boundary is more complete. And
according to the Table 3, DSC value, HD value and ADF value increased by
0.03%, 0.04 mm, 0.05 mm respectively. Obviously, the ellipse-shaped loss does
well in shape constraint and guiding the detected boundary contours much closer
to the ellipses covering the fetal head area, even for examples of irregular head
shape such as the second row and the fourth row in Fig. 5.

Table 3: Ablation results on the new test dataset. Base is the Darknet-53 encoder with the
ellipse detection branch network. Seg denotes the fetal hand segmentation branch. ESFF
means the feature fusion module between the segmentation branch and the ellipse detection
branch. Shape means the ellipse-shaped loss.

Methods DSC(%) HD(mm) ADF(mm)
Base 98.05±1.74 1.18±0.74 2.06±2.03
Base + Seg 97.78±1.36 1.21±1.11 1.93±1.41
Base + Seg + ESFF 98.03±1.07 1.13±0.68 1.87±1.59
Base + Seg + ESFF + Shape 98.06±1.37 1.09±0.63 1.82±1.35

4.3. Ablation experiment on HC-18 test set

Combined with our best settings in the deep neural network, we experi-
mented with our proposed HC measurement method on the HC-18 test set. It
can be seen from the measurement results listed in the Table 4 that all the
components of our model have improved the performance on the HC-18 test
set. Compared with Base, Base + Seg shows better performance with DSC and
ADF increased by about 0.23% and 0.11 mm, respectively. The ESFF has fur-
ther improved performance, with DSC, HD, ADF increased by 0.16%, 0.13 mm,
0.09 mm, respectively. This reflects that the context information contained in
the region features is beneficial to the boundary detection in boundary missing
or blurring regions. Under the supervision of Shape, DSC, AD, HD have been
improved by 0.07%, 0.01 mm, 0.06 mm, respectively. This achievement can be
explained by limiting the detected boundary pixels to the contour of the ellipse
as much as possible by the ellipse loss function.

4.4. Comparison with previous studies on HC-18 test set

Performance comparisons are conducted with different state-of-the-art meth-
ods, where the results are listed in Table 5. All these methods were developed
and tested using the HC-18 [3] dataset. The relative performance metrics, ex-
hibited in Table 5, are extracted from the corresponding published papers. The
fetal head measurement method based on a single model [31] obtained the worst
performance. Similarly, our proposed method and the works [14], [6] all employ
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Table 4: Ablation studies on the HC-18 test dataset. The bold number indicates the best
performance in each column.

Methods DSC(%) HD(mm) ADF(mm)
Base 97.97 ± 1.09 1.25 ± 0.71 2.11 ± 1.97
Base + Seg 97.74 ± 1.24 1.36 ± 1.94 2.00 ± 1.94
Base + Seg + ESFF 97.90 ± 1.26 1.23 ± 0.69 1.91 ± 1.79
Base + Seg + ESFF + Shape 97.97 ± 1.15 1.22 ± 0.77 1.85 ± 1.96

Table 5: Comparison with other methods on HC-18 test dataset. The bold number indicates
the best performance in each column.

Methods DSC(%) HD(mm) ADF(mm)
[31] 95.49 ± 4.11 2.44 ± 1.96 2.45 ± 2.55
[14] 96.84 ± 2.89 1.72 ± 1.39 2.12 ± 1.87
[3] 97.00 ± 2.80 2.00 ± 1.60 2.80 ± 3.30
[19] 97.76 ± 1.32 1.32 ± 0.73 1.90 ± 1.77
Ours 97.97 ±1.15 1.22 ±0.77 1.85 ±1.96

multi-task learning strategy, and the significant improvements are obtained than
the results in [31] with DSC improved by 1.35%, 1.27%, 2.48%, HD increased
by 1.28 mm, 1.11 mm, 1.78 mm and ADF increased by 0.33 mm, 0.55 mm,
0.60 mm, respectively. It demonstrates that more information about the fetal
head can be excavated by applying the multi-task strategy, which contributes to
improving the performance of the model. As listed in Table 5, the results of our
proposed method and [6] are both better than [14] in terms of DSC improved
by 1.13% and 0.92%, HD improved by 0.5 mm and 0.4 mm, and ADF improved
by 0.27 mm and 0.12 mm. Since direct approaches are designed to estimate
the HC from ultrasound images in our two work, without having to resort to
segmentation like [14]. Apparently, the inconsistency between the segmenta-
tion pseudo-label and the ellipse annotation worse the accuracy of segmentation
results as mentioned in Section 1. The proposed approach achieves the best
performance listed in Table 5, and the results of our method get improvement
than [6] by 0.21% (DSC), 0.1 mm (HD), 0.05 mm (ADF). Comparison with the
localization information in the bounding box of the fetal head is obtained by a
bounding box regression CNN, the boundary localization information learned
from ellipse region features of the fetal head in our method improves the per-
formance of HC measurement more effectively.

5. Experiments on our self-built dataset

5.1. Experimental setup

As mentioned, the main idea of our method is doing the measurement on
the detected boundary pixels which is helpful to reduce errors caused by the
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inconsistency between the segmentation pseudo-label and the ellipse annota-
tions. And the boundary pixels in missing or blurring boundary regions can be
more easily localized by the proposed method. To validate the effectiveness and
robustness of the proposed method, experiments were conducted on a self-built
dataset.

We used hand-held ultrasound equipment to collect phantom data which is
regarded as the simulation of fetal head ultrasound images. The boundary in
the ultrasound phantom image was randomly occluded to simulate boundary-
missing cases (For each image, we used cut image blocks to randomly occlude
boundary of 1

10 circumference). And measuring the circumference of the cir-
cular area in the ultrasound image was used to simulate the HC measurement.
Here we designed four groups of experiments on our self-built dataset to verify
the effectiveness and robustness of our method for cases with boundary miss-
ing or blurring cases: ultrasound images with 5 MHz center frequency (data
1, high-resolution images with clear boundaries), ultrasound images with 3.5
MHz frequency center frequency (data 2, low-resolution images with blurring
boundaries), ultrasound images with 5 MHz center frequency and boundary
occlusion (data 3), ultrasound images with 3.5 MHz and boundary occlusion
(data 4). Data 1 and data 2 were conducted as a comparative experiment to
study the boundary detection ability of our method with different blurriness
images. Data 3 and data 4 were used to study the measurement accuracy of our
method with the boundary-missing images. We compared the experiment re-
sults by UNet++ [32] and Zaral et al. [14], one is a measurement method based
on a single segmentation model, the other is a measurement method based on
multi-task learning. The experimental parameters and software and hardware
environment were the same as those experiments in Section 4, except the epochs
were set 30 for our self-built dataset.

5.2. Ultrasonic data acquisition and processing

Table 6: Equipment parameters for ultrasound image acquisition.

Parameters Machine Index Gain Dynamic Range Center Frequency
data1 0.7 80dB 80dB 5MHz
data2 0.6 88dB 90dB 3.5MHz

The handheld ultrasound equipment we used was Sonoster UProbe (a digital
ultrasonic imaging diagnostic instrument with 128 arrays convex probe shown in
Fig. 6(a)) and the ultrasound phantom is CIRS 040GSE(Fig. 6(b)). And ultra-
sonic images with different resolutions were obtained with the center frequencies
of 5 MHz and 3.5 MHz respectively (an example as Fig. 6(c), the equipment
parameters of ultrasonic image acquisition are listed in Table 6.) Placed the
probe directly on the surface of the phantom and changed the parameters of the
probe to obtain ultrasound images of the phantom with different resolutions.
Images were stored in MP4 format, and each MP4 file contained 100 images.
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After obtaining the phantom ultrasound image, the image was clipped accord-
ing to the position of the circular area , and the clipped sizes were 395 × 278
pixels to 222× 166 pixels. The pixel size of these imgaes is 0.0036mm. Then we
labeled the clipped image with LabelMe (an online open annotation tool). The
data was augmented by rotation(90◦, 180◦, 270◦ ) and gamma transformation
(gamma factor γ ∈ {0.6, 0.7, 0.8, 0.9, 1.1, 1.2, 1.3, 1.4}). The private simulated
phantom ultrasound dataset included 700 images for training and 100 images
for testing. The size of images in this dataset were from 395 × 278 pixels to
222× 166 pixels, resized to 256× 256 pixels with zero padding.

(a) (b) (c)

Figure 6: The equipment of our experiments. (a) is the handheld ultrasound equipment,(b) is
the ultrasound phantom, (c) is an ultrasound image with 5MHz center frequency of the probe.

5.3. Results on our self-built dataset

We now compare our method with two published studies [14], [32] on our self-
built dataset. For the fairness of the results, the same experimental parameters
and experimental data were used for these three methods. With results shown in
Fig. 7, it can be observed that: our proposed method consistently outperforms
these two methods on our self-built dataset in terms of DSC, HD, and ADF
metrics for all four experiments. For ultrasound images with 5 MHz or 3.5 MHz
center frequency, which means these images with different blurriness boundaries,
the results by UNet++ [32] drops 0.0003 mm, the results by [14] drops 0.0007
mm, and the results of our method drops 0.0001 mm. Our method achieves
the least accuracy reduction compared with UNet++ [32] and [14] in ADF
values. These results further validate the effectiveness of our proposed method
for boosting the measurement performance in boundary-blurring cases. Our
proposed method and the work [14] both apply the multi-task learning strategy,
but the results of our method are better. Obviously, the intermediate steps such
as segmentation in HC measurement are prone to errors.

For ultrasound images with boundary occlusion, which means these images
with boundary missing regions. The results show that our proposed method
achieves the best performance in terms of DSC, HD, and ADF metrics. The
measurement method based on UNet++ [32] is most affected and the accuracy
of the three metrics decreased sharply. [14] applies a multi-task strategy to
improve the accuracy of boundary-blurring cases, but their method does not
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Figure 7: Results on our self-built dataset. (a)-(c) are DSC(%), HD(mm), ADF(mm) respec-
tively. We compared our method with other two (UNet++ [32], Zaral et al. [14]) on the
four experiments (5 MHz denotes ultrasound images with 5 MHz center frequency (data 1),
3.5 MHz denotes ultrasound images with 3.5 MHz center frequency (data 2), 5 MHz with
occlusion denotes ultrasound images with 5 MHz center frequency and boundary occlusion
(data 3), 3.5 MHz with occlusion denotes ultrasound images with 3.5 MHz center frequency
and boundary occlusion (data 4).

work in boundary-missing cases, with reduction by 0.6% (DSC), 0.0039 mm
(HD), 0.0054 mm (ADF) on data 3, and reduction by 4.38% (DSC), 0.0276
mm (HD), 0.0035 mm (ADF) on data 4, respectively. They can not effectively
guide the segmentation in these boundary-missing pixels by regressing elliptic
parameters on the segmentation features. Differently, we add ellipse-shaped loss
on boundary detection results, which avoids the difficulty of network training
caused by the fluctuation of shape constraints, and can guide the prediction
results closer to the ellipse more effectively. The results of the proposed method
slightly drop 0.1% (DSC), 0.0006mm (HD), 0.0054mm (ADF) on data 3, and
0.19% (DSC), 0.0014 mm (HD), 0.0016 mm (ADF) on data 4, respectively.

The results presented above show that the proposed method achieves the
most superior performance in terms of ADF and its average value and variance
for the designed four experiments. That convincingly demonstrates the effective-
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ness and robustness of our proposed method in handling cases with boundary
missing or blurring regions for fetal head circumference measurement.

6. CONCLUSION

In this work, we propose an ellipse-guided network for fetal head circum-
ference measurement in ultrasound imaging, which focuses on pixel prediction
in boundary missing or blurring regions. The core idea is to introduce region
features by the feature fusion module and detect the fetal head boundary un-
der the ellipse shape supervision for improving the measurement performances.
Both the public dataset HC-18 and a self-built dataset are used to validate
the effectiveness of our proposed method. The experimental results show that
the proposed method achieves DSC 97.97%, HD 1.22 mm, and ADF 1.85 mm,
which are better than the performances of the other state-of-the-art approaches.
It is also worth mentioning that this work is among the first attempts to di-
rectly detect the fetal head boundaries for fetal head circumference measure-
ment, without resorting to segmentation edges, which provides great support to
sonographers in the clinical practice of prenatal examination.
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